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Abstract

A central question regarding thin metallic films is how does the roughness of the film affect its electrical transport properties, when
its thickness is comparable to or smaller than the electron mean free path. The drive to build ever-faster circuits generates the drive for
miniaturization and VLSI, which poses a pressing need to reach full understanding of electron–rough surface scattering. We review progress
in the field that has taken place over the last 5 years.

From the theoretical point of view, the so-called mSXW theory [Munoz et al., J. Phys.: Condens. Matter 11 (1999) L299] was recently
published. The increase in resistivity induced by electron–surface scattering is computed using Kubo’s linear response theory. The conductivity
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f the film is determined by the spectral function characterizing the one-particle Green’s function describing the electron gas confi
he film. The effect of the rough surface is to modify the self-energy of the electron gas. The conductivity of the film turns out to d
he height–height autocorrelation function (ACF) that describes the rough surface. It can be written in a closed form if the ACF is
ither by a Gaussian or by an exponential.
From the experimental point of view, the tendency to use parameters provided by theory as quantities that must be fitted to descri

esistivity data has been replaced by direct measurements of the surface roughness. The first measurement of the ACF of the r
f a 70-nm thick gold film deposited on mica was recently published [Munoz et al., Phys. Rev. B 62 (2000) 4686]. The measure
erformed with a scanning tunneling microscope (STM). Using the data recorded with the STM and the mSXW theory, we repro

hickness as well as the temperature dependence of the best resistivity data available for gold films on mica. Theory reproduced
ithin a few percentwithout adjustable parameters.
We report also the first measurement of the increase in resistivity induced by electron–surface scattering in gold films deposite

erformed at low temperatures and high magnetic fields.
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. Introduction

A central question regarding thin metallic structures is how
oes the roughness of the surface that limits the structure af-

ect its electrical transport properties, when one or more of
he dimensions that characterize the structure are comparable
o or smaller than the mean free path of the charge carriers,
hat is known as “size effects”. At the moment, the half
itch among the lines of the integrated circuits used in build-

ng PCs is about 100 nm, and this dimension is expected to
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decrease to about 20 nm by the year 2018[1]. This trend to
wards miniaturization leading to very large-scale integra
(VLSI) poses a pressing need to reach full understandi
electron–surface scattering. We review progress in the
that has taken place over the last 5 years.

It seems interesting to note that the first paper conce
size effects was published in 1998 by Stone[2]. However
most of the experimental work carried out during the las
years relies on the work of Fuchs[3], later extended by Son
heimer[4,5], in what is now known as the Fuchs–Sondhei
(FS) theory. The FS formalism uses a description of elec
transport in a metal that is based upon a classical equ
the Boltzmann transport equation (BTE), proposed in the



R.C. Munoz

19th century:(
∂f

∂t

)
COLL

=
(
∂f

∂t

)
FIELDS

Here the term on the left represents the rate of change of
the distribution function characterizing a gas of point-like
particles due to collisions between the particles; the term
on the right represents the rate of change of the distribution
function induced by the presence of the external fields. The
rate of change of the distribution function due to collisions can
be written in terms of the quantityT (�v, �v′) that describes the
probability per unit time that a particle moving with velocity
�v before the collision comes out of the collision travelling
with velocity �v′:(
∂f (�v)

∂t

)
COLL

=
∫

d3�v′T (�v, �v′)(f (�v′) − f (�v))

wheref (�v) is the distribution function, a quantity propor-
tional to the density of particles moving with velocity�v.

The first attempts at introducing quantum mechanics in
the theoretical description of electron scattering in crystalline
solids were based upon BTE. In order to use a classical the-
ory to describe electron transport, one must assume that the
wave-like behavior of electrons is not dominant, and that the
effect of quantum mechanics can be accounted for by con-
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ρ0(T) arises from the term contained within the brackets, from
electron–acoustic phonon scattering. The integralφ(x) arises

from evaluating the collision operator
(
∂f
∂t

)
COLL

in BTE,

by computing the transition rateT (�v, �v′) from the Hamil-
tonian describing the electron–phonon interaction, using a
Fermi–Dirac distribution to describe the electron population,
and a Bose–Einstein distribution to describe the phonon pop-
ulation. At low temperatures (close to liquid helium), the
phonons are frozen out, and the contribution to the resistiv-
ity ρ0(T) arising fromφ(x) becomes negligible compared to
ρR; hence the resistivity of the sample at low temperatures is
dominated by the residual resistivity.

The remarkable success of this approach in the case of
crystalline metals and semiconductors depends on the valid-
ity of a huge simplification. It is assumed that(
∂f (�v)

∂t

)
COLL

= −f (�v) − f0(�v)

τ(�v)

wheref (�v) represents the electron distribution function in the
presence of the external fields,f0(�v) represents the equilib-
rium distribution function (the electron distribution function
in the absenceof external fields) andτ(�v) is the velocity-
dependent relaxation time. This is known as the relaxation
time approximation.

Notice that not all electron scattering mechanisms present
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idering electrons as classical point particles, which are
rtheless endowed with an effective massm* (by virtue of
eing immersed in a crystal lattice instead of in vacuum)
re endowed with spin, as phonons are (spin 0 for pho
pin 1/2 for electrons). The inclusion of quantum mecha
n this otherwise classical description of electron scatte
roceeds by writing a Hamiltonian for the electron–pho

nteraction, which allows the calculation of the scattering
(�v, �v′) entering the collision operator by means of Ferm
olden rule, and by using quantum statistics to describ
lectron and the phonon population.

.1. Bloch–Gruneisen resistivity

Following this approach, the Bloch–Gruneisen theory
cribing the resistivity of a crystalline metal was publis
n the 1930s, a theory that was remarkably successful
loch–Gruneisen resistivity of a metalρ0(T) with a spher

cal Fermi surface, describes the resistivity arising f
lectron–impurity scattering and from electron–acou
honon scattering, and is given by[6]

0(T ) = ρR + A

(
1 + BT

θ − CT

)
φ

(
θ − CT

T

)

ithφ(x) = 4x−5
∫ x

0

z5 exp(z)

(exp(z) − 1)2
dz (1)

here A, B, C and θ are constants (tabulated in t
ase of gold[6]). The temperature-independent termρR
nown as “residual resistivity”, is normally attributed
lectron–impurity scattering. The temperature dependen
n crystalline solids are such that the corresponding B
ann collision operator can be well represented by a

axation time. Fortunately, for the case of electron–aco
honon scattering, electron–optical phonon scatterin
on-polar crystals, electron–neutral impurity scattering
lectron–ionized impurity scattering, detailed calculat

f
(
∂f
∂t

)
COLL

based upon the computation ofT (�v, �v′)
rom the Hamiltonian describing the electron–scattere
eraction confirm the validity of the relaxation time a
roximation [7,8]. These calculations proceed by us
ermi’s golden rule, as well as the Bose–Einstein di
ution for phonons, and the Fermi–Dirac distribution
lectrons.

Most of the electron scattering mechanisms known in c
alline solids within the first half of the 20th century could
escribed by a relaxation time, and did not require a q

um mechanical description of charge transport, where
ave-like behavior arising from wave–particle duality wo
ecome dominant. This is, perhaps, the reason that ex
hy early theories of electron transport based upon the
ical BTE—patched-up to describe quantum effects in
anner described—were so successful in the case of

alline metals and semiconductors. Such situation cha
ver the second half of the 20th century, with the disco
f a variety of physical phenomena involving systems w

he observed macroscopic behavior cannot be explain
TE; phenomena that can only be explained by using q

um transport theories where the wave-like behavior o
harge carriers is dominant from the outset. To name o
ew, there is the scanning tunneling microscope, the disco
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of quantum dots, quantum wells, quantum point contacts, the
quantum Hall effect, etc.

Note that if two distinct electron scattering mechanisms
for which a relaxation time exists are described by their own
relaxation timesτ1 andτ2, then the change of the electron
distribution function per unit time, caused by different scat-
tering events, is the addition of the scattering rates arising
from each electron scattering mechanism acting alone. In
crystalline solids, scattering mechanisms which can be char-
acterized by relaxation times that are independent of the mo-
mentum of the electrons, plus the additivity of the scattering
rates,1

τ
= 1

τ1
+ 1

τ2
, lead naturally to the additivity of the cor-

responding resistivitiesρ =ρ1 +ρ2. This is known as Math-
iessen’s rule; it played an important role in the early theories
of charge transport in crystalline solids.

1.2. Fuchs–Sondheimer theory

Since a relaxation time had not been found to represent
the collision operator arising from electron–surface scatter-
ing, FS introduced a phenomenological parameterR (the
surface reflectivity), as a boundary condition that must be
satisfied by the electron distribution function. FS assumed
that a fraction 0≤R≤ 1 of the electrons colliding with the
rough surface undergo specular scattering, e.g. reverse their
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(b) Measure the transport coefficients (resistivity, Hall volt-
age, magnetoresistance, thermoelectric power, etc.) of
each member of the family. The transport coefficient most
commonly measured is the resistivity of the films.

(c) Adjust the parameters provided by theory (surface spec-
ularity R, bulk conductivityσ0, bulk mean free path�,
r.m.s. surface roughness amplitudeδ, in the case of mod-
ified versions of FS), until reaching an optimum descrip-
tion of the data (e.g., a description of the temperature
dependence and the thickness dependence of the resis-
tivity of a family of thin metallic films, prepared under
similar conditions of evaporation).

There are two assumptions that underlie this method of data
analysis:

(i) It is assumed that the reflectivityR is independent
of the angle between the momentum of the incoming
electron and the normal to the surface. It is also as-
sumed thatR is common to all members of the fam-
ily (prepared under similar conditions of evaporation).
ThereforeR is independent of the thickness of the
samples.

(ii) It is assumed that the other parameters provided by theory
(σ0, �, δ) are also independent of the thickness of the
sample.
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rage) surface upon colliding with it, while the in-plane m
entum remains unchanged. The FS result for the inc

n resistivity induced by electron–rough surface scatterin
film of thicknesst limited by two rough surfaces having t
ame specularityR is customarily written as a ratio betwe
wo conductivitiesσ

σ0
. Hereσ represents the conductivity

he metallic filmincludingelectron–roughsurfacescatterin,
ndσ0 represents the conductivityof thebulk, i.e., thecondu
ivity that would be observed in the film if electron–surf
cattering was switched off. The FS result is

σ

σ0
= 1 − 3�

2t
(1 − R)

π/2∫
0

cosϑ sin3ϑ
[
1 − exp

( −t
� cosϑ

)]
1 − Rexp

( −t
� cosϑ

) dϑ

(2)

Note that the FS result contains two parameters tha
nknown a priori, the bulk conductivityσ0 and the corre
ponding bulk mean free path�.

.3. Comparison between theory and experiment

The method of data analysis that has been used for se
ecades to compare theory and experiment, based up

heory, is the following:

a) Prepare a family of thin metallic films of differe
thickness, evaporating the same material onto sim
substrates, keepingthe same conditions of evaporati
(vacuum, temperature of the substrate, speed of eva
tion, post-evaporation annealing, if any).
l

.4. Conceptual difficulties arising when applying FS
heory

The first and most obvious difficulty has to do with
orphology of the films. In the case of gold films depos
n mica, at the very early stages of evaporation, the film
ists of isolated islands, whose lateral dimensions depe
he conditions of evaporation. Electrical continuity of the fi
s achieved once the islands grow sufficiently such that
act is established between neighboring islands. How
lthough the islands can be considered as crystallites
row with direction [1 1 1] oriented perpendicular to the s

ace of the mica[9], different crystallites need not exhibit t
ame crystalline orientation. This gives rise to grain bo
ries between neighboring crystallites which might be

ially reflecting. A gold film that exhibits continuity mig
lso contain pinholes and dislocations, as a result of im

ect gold coverage of the substrate, and of lattice mism
etween the gold and the mica. Consequently, the resis
easured on a thin gold film deposited on mica (a film is

ideredthin when its thickness is comparable to or sma
han the electron mean free path) will normally include c
ributions arising from electron scattering by defects s
s pinholes, grain boundaries and dislocations, which
ot included in FS theory, nor in other theories of s
ffects.

Before comparing thin-film resistivity data with theor
f size effects, great care must be taken to minimize the

ributions to the film resistivity arising from electron sc
ering by defects other than the rough surfaces. As stat
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a review article assessing the literature published up to the
early 1980s concerning the problem of size effects, “. . . the
most important conclusion is that there are virtually no stud-
ies on the resistivity of thin metal films from which useful
values ofρ0�0 [the product of the bulk resistivity and bulk
mean free path] may be deduced.. . . It appears that there has
been a large amount of experimental work which, because
of the ease of production and measurement of thin films, has
suffered from the lack of quantification of the properties of
the films in terms of grain size and crystallinity as well as
almost total lack of appreciation of the complexities of the
problem.” (Ref.[10, p. 330]).

The second conceptual difficulty arising from FS theory,
that has been largely ignored by researchers in the field, is
that in the limit of ultrathin films

(
�
t

→ ∞)
, the FS conduc-

tivity diverges as ln
(
�
t

)
in Eq. (21) of Ref.[5]. In this limit,

the conductivity is limited only by electron–rough surface
scattering. It follows that, within FS theory, in thin ultrapure
films, electron–surface scatteringdoes not dissipate energy,
since it gives rise to a null resistivity. This limit is wrong,
and the error is a consequence of ignoring quantum effects
within a classical theory.

A report of the resistivity measured at 4 K in ultrathin films
of CoSi2 grown onton-Si (1 1 1)[11] pose an additional diffi-
culty. The silicide film is a metal. Because of the small (1.2%)
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2. Progress in the theoretical description of size
effects: quantum transport theories based upon a
Hamiltonian formulation of the problem

Over the last 20 years some theories have been pub-
lished that permit the calculation of the increase in resis-
tivity induced by electron–rough surface scattering, from
the knowledge of the parameters that characterize the (av-
erage) rough surface. Progress in this area was triggered by
the advent of quantum transport theories of charge transport.
These theories, rather than assuming the validity of a classi-
cal transport equation such as BTE, to later patch it up—by
forcefully introducing the correct quantum distributions de-
scribing the phonon population and the electron population
in Boltzmann collision operator, together with inserting a
surface reflectivityR imposed as a boundary condition on
the electron distribution function—proceed from a fresh for-
mulation of the problem. A way was found of writing the
Hamiltonian for electrons confined within a metallic film
bounded by two rough, parallel surfaces, such that the ef-
fect of electron–rough surface scattering can be described
by a term that adds to the Hamiltonian describing the elec-
trons confined between two flat, parallel surfaces. The ef-
fect of this additive term is considered a perturbation, and
the conductivity is computed using a perturbative approach.
T
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attice mismatch between CoSi2 and Si, and as a conseque
f the 600◦C needed to produce the solid reaction betw
o and Si, CoSi2 grows on Si (1 1 1) as an almost perf
pitaxial film. Ultrathin films with thickness ranging fro
to 110 nm have been grown. The new interesting res

hat the residual resistivity observed in films with a thickn
nder 10 nm grows rapidly with decreasing film thicknes
way that cannot be described by the FS theory,no matter
hat specularity parameter is chosen to describe the

11].
There is, yet, another argument that has been raised

ng to a shortcoming of FS theory, the argument is du
iman[12]. As a consequence of wave–particle duality,
ould expect the electrons in a metal film to behave
aves characterized by the Fermi wavelengthλF (in gold,
F = 0.52 nm). Based upon crude arguments stemming
ave optics, one might expect that the surface reflectivR
hould depend both on the direction of motion of the inc
ng electron relative to the (average) surface, as well as o
cale of distances over which corrugations take place.
ugations occurring over a scale of length that is far gre
hanλF should lead to a specular reflection that there
ontributes very little to increase the resistivity of the fi
n the other hand, corrugations taking place over a sca

ength comparable toλF (to within an order of magnitude
hould contribute rather significantly to increase the re
ivity of the film. One might hope that a quantum theory
lectron–rough surface scattering would incorporate a m
nism to select the scale of distances over which corruga

ake place, to account naturally for the wave-like behavio
lectrons.
here is the theory of Trivedi and Aschroft (TA[13]), the
heory of Tesanovic, Jaric and Maekawa (TJM[14]) and
he theory of Sheng, Xing and Wang (SXW[15]). What
hese theories have in common is that in all of them,
escription of electron transport in terms of BTE was ab
oned; they are all quantum theories of charge transpor
roceed from a fresh Hamiltonian formulation of the pr

em, where the effect of electron–rough surface scatte
s described by one additional term in the Hamiltonian.
ill focus on the SXW theory, for it has two distinct a
antages: (a) it is the only quantum transport theory
oes over the FS theory, in the case of thick films w
lectrons exhibit a short mean free path; (b) it coinc
ith the TA and TJM theories, within the appropriate l

ts [13–15].

.1. The theory of Sheng, Xing and Wang (SXW)

Within the formalism proposed by SXW, the increas
esistivity induced by electron–rough surface scatterin
omputed using Kubo’s linear response theory. The con
ivity of the film is calculated from the spectral function ch
cterizing the one-particle Green’s function describing
lectron gas confined within the film. The effect of the ro
urface is to modify the self-energy of the electron gas.
elf-energy is computed using the Feymann–Dyson pe
ation approach.

To summarize results published by SXW relevant to
resent discussion, the ratio of the film conductivityσ to
ulk conductivityσ0 is computed in terms of the quantu
eflectivityR(k‖) given by
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R(k‖) =
(

1 − kZQ(k‖)

1 + kZQ(k‖)

)2

(3)

(from Eq. (7) of Ref.[15]) whereQ(k‖) represents the dis-
sipative part of the self-energy of the electron gas due to
electron-surface scattering,k2

Z = k2
F − k2

‖, wherekF stands
for the Fermi momentum andk‖ = (kx, ky) represents the in-
plane momentum. The ratio of the film conductivityσ to bulk
conductivityσ0 is computed in terms of the reflectivityR:

σ

σ0
= 1 − 3

2

�

t

1

X0Nc

Nc∑
n=1

un

× (1 − u2
n)

(1 − R(un))(1 − Ed(un))

1 − R(un)Ed(un)
(4)

(Eq. (11) of Ref. [15]) where t is the film thickness,�
the carrier mean free path in the bulk,un = qn

kF
= cosθn =

nπ
tkF
, Xc = tkF

π
,Nc = int(Xc) where int(M) stands for the inte-

ger part ofM, X0 = 3
2

[
1 − 1

3

(
Nc
Xc

)2 (
1 + 1

Nc

) (
1 + 1

2Nc

)]
and Ed(un) = exp

(
−t
un�

)
. Eq. (4) is the quantum version

of Eq. (2), where the integration over the solid angle
dΩ∼ sinθ dθ in Eq.(2)has been replaced by a finite sum over
theNc electronic states of a particle in a box which are occu-
p
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However, SXW used the so-called white-noise approxi-
mation, where the ACFf(x, y) is assumed to be proportional
to a delta functionδ(x, y) and consequently, its Fourier Trans-
form F (k‖) is a constant independent of the in-plane mo-
mentumk‖. The white-noise approximation severely limits
the predicting power of the theory, for the increase in re-
sistivity induced by electron–rough surface scattering turns
out to depend onQ0, the self-energy of the electron gas
confined by rough surfaces such that the Fourier transform
of its height–height ACF is well represented by a constant
(independent of the in-plane momentum). The undesirable
consequence of such approximation is that the measurable
properties of the surface become absorbed into this constant.

2.2. Modified SXW theory (mSXW)

In order to improve the predicting power of the SXW for-
malism, we abandoned the white-noise approximation. We
computed the self-energyQ(k‖) from Eq.(5), when the av-
erage ACF that characterizes the surface is described by

a Gaussianf (x, y) = δ2 exp
[
− x2+y2

ξ2

]
, or by an exponen-

tial f (x, y) = δ2 exp

[
−

√
x2+y2

ξ

]
, where (δ, ξ) are the r.m.s.

roughness amplitude and lateral correlation length, respec-
tively. Since the corresponding Fourier transforms are real,
t e
u n
g by a
d ex-
p CF,
t

Q

w der
z

imit

Q

w

r

w nd
[

ied, states where the perpendicular momentumqn = nπ
t

is
uantized as a result of the confinement of the electron
etween two parallel potential barriers.

A consequence of the quantum formulation of the prob
s that the film conductivity no longer diverges in the lim
�
t

→ ∞)
; it remains finite. In the case of a constant reflec

ty R< 1 (independent of the direction of motion of the e
ron approaching the rough surface), the surface-limited
uctivityσs predicted by SXW theory, in the limit

(
�
t

→ ∞)
,

s given approximately, byσs = σ0
3t
4�

1−R
1+R

ln(Nc) [16].
To complete the presentation of SXW results releva

he present discussion, the electron self-energyQ(k‖) is given
y

(k‖) = −Im
∫

d2q‖
(2π)2

F (k‖ − q‖)q̄ cot(tq̄) (5)

Eq. (5) of Ref.[15]) where Im(C) stands for the imagina

art of a complex numberC, q̄ =
(
q2
z + i kF

�

)1/2
is a complex

avenumber (introduced to account for the finite condu
ty in the bulk), andF (k‖) is the Fourier transform of th
eight–height ACFf (r‖) averaged over the rough surfa
efined by

(r‖) = f (x, y) = S−1
∫
S

h(a‖)h(a‖ + r‖) d2a‖ (6)

here r‖ = (x, y) stands for the in-plane coordinates a
(r‖) = h(x, y) represents the random height characteri

he rough surface at position (x, y) with respect to the avera
flat) surface atz= t or z= 0.
he main contributions toQ(k‖) arise from the poles of th
nperturbed Green’s function cot(tq̄) describing an electro
as confined between two flat parallel plates separated
istancet that can be evaluated using a Mittag–Leffler
ansion of ¯q cot(tq̄) leading, in the case of a Gaussian A

o

(k‖) = ξ2δ2

2t
π exp

[
−ξ2

4
(k2

‖ + k2
F)

] Nc∑
n=1

(nπ
t

)2

× exp

[(nπ
t

)2 ξ2

4

]
I0

(
ξ2

2
k‖

√
k2

F −
(nπ
t

)2
)

(7)

hereI0(x) stands for the modified Bessel function of or
ero[17].

In the case of an exponential ACF we obtain, in the l
ξ2kF
�

� 1:

(k‖) = 2ξ2δ2

t

Nc∑
n=1

(nπ
t

)2

× E[r2(k‖, qn)]

[1 + ξ2(k‖ − qn)2]
√

1 + ξ2(k‖ + qn)2
(8)

ith

2(k‖, qn) = 4ξ2k‖qn
1 + ξ2(k‖ + qn)2

hereE(r2) stands for the elliptic integral of second ki
17].
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2.3. Increase of resistivity induced by a fractal surface

A report was recently published, where the surface rough-
ness of gold films deposited on mica substrates was measured
with an atomic force microscope (AFM). The conclusion of
this work is that the roughness of the gold films deposited
on mica can be described as a self-affine fractal[18]. For
this reason, we extended the mSXW formalism to include
the case of fractal surfaces characterized by three parame-
ters: the r.m.s. roughness amplitudeδ, the lateral correlation
lengthξ and the roughness (Hausdorff) exponentH that de-
scribes the local fractal dimension, 0≤H≤ 1. Extension of
the mSXW formalism to the case of electron scattering by
rough fractal surfaces leads to a self-energy of the electron
gas given by[19]

Q(H, k‖) = πδ2ξ2

t

Nc∑
n=1

(nπ
t

)2 F (1 + H,1/2,1;z)

[1 + Aξ2(k‖ + qn)2]
1+H

where the functionF(a, b, c; z) is the confluent hypergeomet-
ric function given by[19]

F (a, b, c; z) = Γ (c)

Γ (b)Γ (c − b)

×
1∫
t−1/2(1 − t)c−b−1(1 − tz)−a dt,

elf-
c
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scribed by a relaxation time and requires instead a quantum
description of charge transport. Within this quantum descrip-
tion, the identity of the initial and the final state occupied by
the electron before and after being scattered plays an impor-
tant role, as underlined by the very fact that the contribution to
the conductivity (Eq.(4)) involves a sum over the subindex
n that identifies the states of a particle in a box which are
occupied.

The consequence of this asymmetry between electron
scattering in the bulk and electron–rough surface scattering
is that the additivity of the scattering rates no longer leads
to the additivity of the corresponding resistivities, hence the
validity of Mathiessen’s rule breaks down[16,19].

3. Progress in the experimental methods used to
study size effects

Progress in the experimental methodology regarding size
effects was triggered by the invention of scanning probe
microscopes capable of measuring surface roughness with
atomic resolution, and among these, the scanning tunneling
microscope (STM). The availability of a STM, convinced
us to abandon the tendency of considering the parameters
provided by theory (bulk conductivityσ0, bulk mean free
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and A is a normalization constant given by the s
onsistent solution of

= 1

2H
[1 − (1 + Ak2

Cξ
2)

−H
]

here kC = π
a0

is the upper cutoff wavevector in Four
pace, witha0 denoting the distance along the (x, y)-plane
hosen to limit the validity of the fractal description of
urface, to account for the granularity of the atoms at s
istances[19].

In the process of extending the mSXW formalism to c
ute the increase in resistivity arising from electron–sur
cattering in a metal film bounded by rough fractal surfa
e found evidence suggesting that Mathiessen’s rule mig
everely violated, when the electron scattering mechan
hat give rise to the observed film resistivity are electron s
ering in the bulk plus electron–rough surface scattering[16].
his should not be surprising, for it is simply a conseque
f the fact that electron scattering in the bulk can be wel
cribed by a semi-classical theory, a solution of BTE wi
he relaxation time approximation. Within the classical
ry, the fact that the metallic sample takes the form of a
lm (and the electron momentum perpendicular to the fil
uantized as a consequence of the confinement of the

ron gas between two parallel potential barriers) is irrelev
ence, the corresponding resistivity is independent o

dentity of the electron states. This is in contrast to elec
cattering by a rough surface, which cannot be properl
ath�, r.m.s. roughness amplitudeδ and its lateral correla
ion lengthξ) as adjustable parameters—a tendency tha
ominated the literature for several decades—and comp
s to measure directly the surface roughness of a 70 nm
lm evaporated onto a mica substrate.

The reason for using gold is that its surface will not
dize. Consequently, the measurement of the surface ro
ess with the STM can be performed in air. The reaso
sing a mica substrate is that the roughness contributed
ica consists of cleavage steps that occur rather infrequ

ver the scale of length of tens of nanometers to hund
f nanometers set by the electronic mean free path. C
uently, the increase in the resistivity of the film arising fr
ollisions between the electrons and the gold–mica inte
an be safely ignored.

.1. Measurement of the height–height autocorrelation
unction

The first measurement of the ACFf(x,y) characterizing th
oughness of a gold film 70 nm thick evaporated onto m
reheated to 300◦C in UHV was recently published[9]. We
erformed measurements of the random heighth(r‖) char-
cterizing the surface with respect to the average surfa
= t. From the data recorded with the STM, we compu
(x, y) according to its definition by Eq.(6), in the scale
f 300 nm× 300 nm, 100 nm× 100 nm, 30 nm× 30 nm and
0 nm× 10 nm. The results are displayed inFig. 1. The
WHM of the peak shown inFig. 1 was less than 1 pix

n all scales except in the shortest scale of 10 nm× 10 nm
Fig. 1a).
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Fig. 1. (a) Average of 20 ACFs calculated from the surface roughness profiles recorded at random locations of the sample on a scale of 20 nm× 20 nm using
periodic boundary conditions, from 20 images recorded with the STM containing 256× 256 pixels each. (x, y) represent the fast and slow scan directions,
respectively. The inset shows the details of the 10× 10 pixels that constitute the central peak of the average ACF. (b) Average of 25 ACFs calculated from
the surface roughness profiles recorded at random locations of the sample on a scale of 60 nm× 60 nm using periodic boundary conditions, from 25 images
recorded with the STM containing 256× 256 pixels each. (c) Average of 24 ACFs calculated from the surface roughness profiles recorded at random locations
of the sample on a scale of 200 nm× 200 nm using periodic boundary conditions, from 24 images recorded with the STM containing 256× 256 pixels each. (d)
Average of 29 ACFs calculated from the surface roughness profiles recorded at random locations of the sample on a scale of 600 nm× 600 nm using periodic
boundary conditions, from 29 images recorded with the STM containing 256× 256 pixels each. Reprinted from Ref.[9] published by the American Physical
Society, with permission.

3.2. The r.m.s. roughness amplitudeδ and lateral
correlation lengthξ: influence of roughness modeling

The data representing the peak at the origin of the aver-
age ACF displayed inFig. 1a was fitted using a Gaussian

f (x, y) = δ2 exp
[
− x2+y2

ξ2

]
and an exponentialf (x, y) =

δ2 exp

[√
x2+y2

ξ

]
, employing a least-square fit procedure,

choosing 6× 6, 8× 8, 10× 10 and 12× 12 pixels near the
origin. The values obtained forδ andξ, as well as the corre-
sponding values forχ2 are listed inTable 1(reprinted from
Ref. [20] published by the Institute of Physics Publishing,

Table 1
Parameters characterizing the ACF data

Exponential Gaussian

δ ξ χ2 δ ξ χ2

6× 6 0.746 0.198 0.137 0.539 0.344 0.461
8× 8 0.687 0.231 0.498 0.494 0.401 2.21
10× 10 0.633 0.271 0.821 0.448 0.489 3.78
12× 12 0.602 0.299 1.510 0.422 0.549 7.81
〈x〉 0.667 0.250 0.476 0.446

δ= r.m.s. amplitude;ξ = lateral correlation length;χ2 = chi-square, parameter
characterizing the goodness of the fit. Reprinted from Ref.[20], published
b

with permission). The values obtained forδ andξ are consis-
tent with the atomic resolution exhibited by the tip of the STM
when running on HOPG prior to measuring the gold sample.
Consequently, the rounding-off that could be expected on the
images recorded with the STM due to the finite radius of
curvature of the tip does not seem to play a significant role.
A glance atTable 1reveals that both the Gaussian and the
exponential provide a good fit (as indicated by the low values
of χ2) to the experimental ACF data, although the fitting by
an exponential seems consistently better than the fitting by a
Gaussian, for the values obtained forχ2 are at least a factor
of 3 lower. The r.m.s. amplitudeδ for the exponential ACF
turns out to be about 30% larger than the value corresponding
to the Gaussian ACF.

3.3. Quantum reflectivity of the rough surface

The quantum reflectivity arising from the roughness mea-
sured in the scale of 20 nm× 20 nm predicted by the mSXW
formalism is shown inFig. 2a, calculated using Eqs.(3)
and (7) for a Gaussian representation of the ACF using
(δ= 0.455 nm,ξ = 0.480 nm), the average of the values for
δ andξ obtained by least-square fitting the peak at the ori-
gin of Fig. 1a over the 8× 8, 10× 10 and 12× 12 pixels
near the origin. Since the observed FWHM of the central
p ales,
y the Institute of Physics Publishing, with permission.
 eak of the ACF is less than one pixel in the larger sc
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Fig. 2. (a) ReflectivityRcharacterizing electron–surface scattering predicted by the mSXW theory according to Eqs.(3) and (7), for a film where the average ACF

is described byf (x, y) = δ2 exp
[
− x2+y2

ξ2

]
, with δ= 0.455 nm,ξ = 0.480 nm, plotted as a function of cos(θ), whereθ represents the angle of incidence between

the momentum of the incoming electron and the normal to the surface. The dotted line represents the white-noise reflectivityR[f0, cos(θ)] =
[

1−f0 cos(θ)
1+f0 cos(θ)

]2
for

f0 = 7.16. The horizontal dotted line represents the average reflectivity〈R〉 = 0.479 predicted by the mSXW-Gaussian model. The triangles-dotted line represents

Soffer’s reflectivityRS given byRS(θ) = exp

[
−
(

4πδ
λF

cos(θ)
)2
]
, whereδ= 0.455 nm represents the r.m.s. surface roughness. Soffer assumed that the motion

of electrons in a metal film is correctly described by a BTE, and introduced the effect of electron–rough surface scattering via boundary conditions similar to
those proposed by FS, except that Soffer introduced an ad hoc reflectivityRS that is assumed to depend onθ in the manner described [Soffer, J. Appl. Phys.
38 (1967) 1710]. (b) ReflectivityR characterizing electron–surface scattering predicted by mSXW theory according to Eqs.(3) and (7), for a film where the

average ACF is described byf (x, y) = δ2 exp
[
− x2+y2

ξ2

]
, with δ= 2.00 nm,ξ = 0.480 nm, plotted as a function of cos(θ). The horizontal dotted line represents

the average reflectivity〈R〉 = 0.903. (c) ReflectivityRcharacterizing electron–surface scattering predicted by mSXW theory according to Eqs.(3) and (7), for a

film where the average ACF is described byf (x, y) = δ2 exp
[
− x2+y2

ξ2

]
, with δ= 3.40 nm,ξ = 0.480 nm, plotted as a function of cos(θ). The horizontal dotted

line represents the average reflectivity〈R〉 = 0.957. (d) ReflectivityR characterizing electron–surface scattering predicted by mSXW theory according to Eqs.

(3) and (7), for a film where the average ACF is described byf (x, y) = δ2 exp
[
− x2+y2

ξ2

]
, with δ= 11.7 nm,ξ = 0.480 nm, plotted as a function of cos(θ). The

horizontal dotted line represents the average reflectivity〈R〉 = 0.995. Reprinted from Ref.[9] published by the American Physical Society, with permission.

to calculate the reflectivityR arising from the roughness
measured in the larger scales, we used a Gaussian repre-
sentation of the ACF withξ = 0.480 nm for all scales, but
δ= 2.00 nm for the scale of 30 nm× 30 nm,δ= 3.40 nm for
the scale of 100 nm× 100 nm andδ= 11.7 nm for the scale
of 300 nm× 300 nm. The results are shown inFig. 2b–d, re-
spectively. The interesting result displayed in these figures is
that the angular dependence of the reflectivity changes dras-
tically as the scale of distance (over which the surface rough-
ness is measured) increases, in a way such that the larger
the scale of distance, the more the reflectivityR approaches
unity. This is also the case if an exponential representation is
chosen (instead of a Gaussian) to describe the ACF data.

An interesting prediction of the mSXW formalism con-
cerns the scale of distances over which corrugations take
place and their relative contributions to size effects. As il-
lustrated inFigs. 1a–d and 2a–d, the corrugations that deter-
mine a specularityRsignificantly smaller than unity are those
taking place over a scale of distances that is large compared
with atomic diameter, but small compared with a mesoscopic

scale; a scale of distances comparable toλF to within one or-
der of magnitude. Electrons colliding with corrugations that
take place over mesoscopic scales of distances (tens of nm) or
larger have only a minor influence on size effects in gold films.
Electrons colliding with such corrugations undergo mostly
nearly specular scattering.

The results presented indicate that the mSXW theory is
able to select the scale of distance over which corrugations
take place, leading toR≈ 1 for corrugations taking place
over scales of distances which are long when compared to a
few λF, andR< 1 for corrugations taking place over scales
of distances which are comparable toλF (to within an order
of magnitude). The ability of the theory to select the cor-
rugations that take place over a scale of distances which is
comparable toλF, as the corrugations that actually do con-
tribute to size effects (in the sense that they lead toR< 1)
is determined by the height–height ACF. As illustrated by
Figs. 1a–d and 2a–d, when the amplitudeδ grows larger than
the wavelength of the carrierλF, the reflectivityR increases
with increasingδ and it rapidly approaches unity.
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3.4. Determination of the bulk conductivityσ0 and bulk
mean free path�

The next issue is how can the roughness parameters (δ, ξ)
measured with the STM be used to analyze thin-film resistiv-
ity data in a family of metal films of different thickness, drop-
ping the assumption that either the reflectivityRor the bulk
mean free path and bulk conductivity (corresponding to each
sample) are common toall members of the family. Although
the contribution arising from electron–phonon scattering is
expected to be the same for samples of different thickness,
there is no reason a priori why the residual resistivity should
also be the same.

The residual resistivityρR appearing in the Bloch–
Gruneisen theory (first term in Eq.(1)) depends on the con-
centration of impurities/defects present in the crystal, and
these concentrationsdo depend on the preparation of the
crystal. On the other hand, the bulk conductivityσ0 and bulk
mean free path�appearing in FS theory represent the conduc-
tivity and mean free path that would be observed in the sample
when electron–surface scattering is switched off. Gold films
evaporated onto mica substrates exhibit pinholes, disloca-
tions and other defects. If the substrate temperature, vacuum
and evaporation speed are kept constant, then the concen-
tration of such defects decreases when the thickness of the
sample increases from a few nanometers to some few hundred
nanometers. The effect of these defects upon charge transport
will not freeze out upon coolingas in the case of phonons,
hence such defects will influence the residual resistivity of
the sample (e.g. the resistivity measured at 4 K).

The calculation of the film conductivity predicted by any
of the theories of size effects faces the severe practical dif-
ficulty that in order to compute the expected film resistivity
ρF(T), we need to know the parametersσ0(T) and�(T ) that
characterize the bulk,and these parameters are not known a
priori . By definition,σ0 and� correspond to the conductivity
and mean free path that would be observed if electron–surface
scattering was switched off, i.e., what would be observed
in a film thick enough such as to warrant that the effect
of electron–surface scattering is negligible,but a thick film
carrying the same concentration of impurities/defects as the
sample beingmeasured. Because the concentration of defects
(other than surface roughness) present in gold films evapo-
rated onto mica substrates is observed to depend (among other
factors) upon film thickness, such definition of the bulk pa-
rameters seems confusing. This has been a stumbling block
ever since the very early work by Sondheimer on size effects.
To circumvent this difficulty, until now and during several
decades, it has beenassumedthat both of these parameters
σ0 and� are the same for a family of films of different thick-
ness prepared under similar conditions of evaporation.

Rather than insisting on this unwarranted assumption that
seems very difficult to justify, we used a new iteration method
that permits the determination of the parameters that charac-
terize the bulk at each temperatureT, from the measured
film conductivityσF(T ) = 1

ρF(T ) and from the parametersδ

and ξ measured with the STM[21]. As a first approxima-
tion, �(T ) corresponding to each temperatureT is calculated
from �1(T ) = σ(T )mvF

nq2 , whereσ(T ) = 1
ρ(T ) is the conductiv-

ity of the film measured at temperatureT, m is the electron
effective mass,vF is the Fermi velocity,n the electron den-
sity andq the electron charge. This value� = �1 is used to

compute a first estimation of
[
σ(T )
σ0(T )

]
1
, employing the rough-

ness parameters (δ, ξ) to determine the increase in resistivity
ρ0(T )
ρ(T ) = σ(T )

σ0(T ) = p(T ) < 1 induced by electron–rough sur-
face scattering, according to whichever theory we choose
to describe size effects in metal films. A corrected value for
� can then be calculated from�2 = �1

[
σ0(T )
σ(T )

]
1
, and a new

value of
[
σ(T )
σ0(T )

]
2

can be computed using the parameters (δ,

ξ) and the theory with� = �2. This process is repeated until

the values of
[
σ(T )
σ0(T )

]
j

and
[
σ(T )
σ0(T )

]
j+1

between two succes-

sive iterationsj and j + 1 do not differ by more than 0.01%
[21].

An interesting situation arises in metal films that satisfy
the following conditions: (A) electron–surface scattering tak-
ing place at the lower surface of the film (in contact with
the substrate) is negligible and (B) the resistivity arising
from electron–impurity scattering plus electron scattering by
grain boundaries and other defects at 300 K is small com-
pared to that arising from electron–phonon scattering at the
same temperature. In samples that satisfy these conditions,
the electron scattering mechanisms that give rise to the ob-
served film resistivity are electron–impurity/defect scatter-
ing, electron–phonon scattering and electron–surface scat-
tering at the upper surface of the film. The first two scattering
mechanisms give rise to the bulk resistivity. For such films,
if the theory used to compute the increase in resistivity in-
duced by electron–surface scattering from the parameters (δ,
ξ) that characterize the surface roughness is correct, then the
temperature-dependent bulk resistivityρ0(T ) = 1

σ0(T ) com-
puted through the iteration process outlined above should
agree with that expected from electron–phonon scattering
plus electron–impurity scattering in the crystalline material.
Consequently, the temperature dependence ofρ0(T) deter-
mined according to the iteration process sketched—using
as input the film resistivityρF(T) measured at tempera-
tureT, and the roughness parameters (δ, ξ) measured with
the STM—should be consistent with a Bloch–Grüneisen
description of the resistivityρ0(T) in the crystalline
metal.

But if ρ0(T ) = 1
σ0(T ) determined through this itera-

tion process turns out, indeed, to be consistent with a
Bloch–Gr̈uneisen description, then the observed film resis-
tivity should agree withρ(T ) = σ0(T )

p(T ) ,whereρ0(T)is the bulk

resistivity given byEq. (1) and (p(T))−1represents the in-
crease of resistivity induced by electron–rough surface scat-
tering predicted by theory. This last criterion provides a very
powerful tool to test different theories of size effects in metal
films. For if the parameters (δ, ξ) chosen to describe the sur-
face roughness and the theory chosen to describe size effects
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are correct, then the theory ought to be capable of describ-
ing both the thickness and the temperature dependenceof
the resistivity observed in families of films of different thick-
nesswithout adjustable parameters, something that consti-
tutes quite a stringent test.

3.5. Comparison between different quantum transport
theories

Since different theories of electron–surface scattering pre-
dict different valuesfor p(T ) = ρ0(T )

ρ(T ) for the sameset of
parameters (δ, ξ) characterizing the roughness of the sur-
face, it seems interesting to find out ifany of the avail-
able theories describing size effects in metal films is capable
of reproducing, at least approximately, the temperature and
the thickness dependence of the resistivity data, in samples
that satisfy conditions (A) and (B). Concerning condition
(A), we expect that electron–surface scattering at the surface
of the film in contact with the substrate will be negligible
in films that have been grown onto an insulating cleavable
crystalline substrate such as mica, for then the roughness
contributed by the substrate consists of cleavage steps that
occur infrequently over the scale of distance probed by the
electrons in their motion through the metal film. Concern-
ing condition (B), we might expect grain boundary scat-
t
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For this reason, we proceeded to analyze the resistivity
data published by Sambles et al.[22], employing the new
method of data analysis outlined above, and the roughness
parameters measured on our 70 nm gold film. The underlying
assumption is that our 70 nm film and the SEJ samples exhibit
a similar surface roughness, for the surface roughness is con-
trolled by the temperature of the substrate and by the speed
of evaporation. When preparing the 70 nm film, we evapo-
rated gold 99.99% pure from a tungsten basket filament at a
speed of 6 nm/min in a UHV vacuum system, with the mica
substrate preheated to 300◦C. Sambles et al. evaporated their
gold 99.9999% pure in a HV vacuum system from a tungsten
basket filament, at a speed of 5 nm/min, onto a mica substrate
preheated to 270◦C. The outcome of the analysis of the SEJ
resistivity data, using the roughness measured on our 70 nm
gold film, is displayed inFig. 3.

The first remarkable result—considering thatnoneof the
theories containanyadjustable parameters—is that all four
models provide an approximate description of both the tem-
perature as well as the thickness dependence of the data
between 4 and 300 K. Agreement between theory and ex-
periment is about 15% or better in the case of TJM, it is
about 10% or better in the case of TA, and it is about 7%
or better in the case of mSXW,regardless of whether we
use a Gaussian or an exponential representation of the ACF.
A ities
c bulk
p er-
e ted
u s the
t the
c ess)
t alysis
o lms
h thin-
n , the
b um
t case
o
p with
t re-
s
I
r film
r

d on
o
v ture
a l
c d
o lms,
a rizing
t , with
d d on
a pable
o

ering to be negligible when the lateral dimensionD that
haracterize the grains that make-up the sample is a
ne order of magnitude larger than the film thicknest.
ambles, Elsom and Jarvis (SEJ) published measure
f the resistivity of several films of different thickness
osited by thermal evaporation of gold on mica, which

o samples in whichD is in the range of several hundr
m (Ref. [22], Fig. 1c and d). The resistivity of the SE
5 nm, SEJ-53 nm, SEJ-80 nm and SEJ-126 nm films at 3

s some 15–30% larger thanρEl-PH(300) = 22.5 n5m ex-
ected purely from electron–phonon scattering in crysta
old [6]; therefore these SEJ samples satisfy conditions
nd (B).

In order to test the predicting power of the quan
ransport theories (TJM, TA, mSXW-Gaussian, mSX
xponential), and to compare different theories betw
hemselves, we analyzed the best resistivity data ava
f thin gold films evaporated onto mica substrates, usin
oughness parameters (δ, ξ) measured with the STM in th
0 nm gold film evaporated onto mica. We did not succ

n analyzing the resistivity data of the 70 nm gold film,
ause our film exhibited a resistivity at room temperatur
0 n5m, more than three times larger than the resistivit
2.5 n5m due to electron–phonon scattering at 300 K.

ncrease in resistivity induced by electron–rough surface
ering at room temperature, in our 70 nm gold film, is expe
o range between 5 and 20%. This is at variance with th
rease of a factor of 3 in the resistivity observed at 30
hat indicates contamination with impurities and/or def
f unknown origin, that mask the effect of electron–ro
urface scattering.
second interesting feature is that the residual resistiv
orresponding to a Bloch–Gruneisen description of the
redicted by thesame model are different for films of diff
nt thickness—despite the fact that the films were evapora
nder similar conditions of evaporation—and decrease a

hickness of the film increases. This is at variance with
onstant residual resistivity (independent of film thickn
hat has been assumed for several decades in the an
f size effect data. This might be expected if thicker fi
ad a smaller concentration of impurities/defects than
er films, something consistent with the fact that at 4 K
ulk mean free path� determined using any of the quant
heories grows larger as the film grows thicker. In the
f the mSXW model, the resistivity of the filmρ(T ) = ρ0(T )

p(T )
redicted for a Gaussian ACF agrees to better than 0.5%

he resistivity of the film predicted for an exponential rep
entation of the ACF for all four films and 4 K≤T≤ 300 K.
t seems reassuring that, within mSXW theory,both rep-
esentations of the ACF lead essentially to the same
esistivity.

The fact that the r.m.s. surface roughness measure
ur 70 nm film turns out to be about 17times largerthan the
alue inferred by Sambles et al. from fitting the tempera
nd the thickness dependence of their data,using a mode
ontaining five adjustable parameters, underlines the nee
f revisiting transport measurements on thin metallic fi
nd the need of cross-checking the parameters characte

he surface roughness obtained by fitting transport data
irect measurements of the surface of the films performe
nanometric scale with a scanning probe microscope ca
f atomic resolution[9].
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Fig. 3. (a) Dotted line: resistivity of the 35, 53, 80 and 126 nm thick gold films on mica reported in Ref.[22, Fig. 3a]. Solid line: film resistivityρ(T) described
on the basis of a Bloch–Gruneisen model, using Eq.(1), ρR as listed, and the constantsA= 12.359 n5m,B=−9.8996× 10−4; C= 3.3994× 10−2; θ = 172.1 K
from Ref. [6], and using the ratioσ

σ0
predicted by the theory of Tesanovic, Jaric and Maekawa[14], for an ACF described by a Gaussian withδ= 0.455 nm

andξ = 0.480 nm. (b) Dotted line as in (a); Solid line: film resistivityρ(T) described on the basis of a Bloch–Gruneisen model, using Eq.(1), ρR as listed, the
constantsA,B,Candθ as in (a) and the ratioσ

σ0
predicted by the theory of Trivedi and Aschroft[13], for an ACF described by a Gaussian withδ= 0.455 nm and

ξ = 0.480 nm. (c) Dotted line as in (a). Solid line: film resistivityρ(T) described on the basis of a Bloch–Gruneisen model, using Eq.(1),ρR as listed, the constants

A, B, C andθ as in (a) and the ratioσ
σ0

predicted by mSXW theory according to Eqs.(3), (4) and (8), for an ACF described byf (x, y) = δ2 exp

[
−

√
x2+y2

ξ

]
with δ= 0.689 nm,ξ = 0.233 nm. (d) Dotted line as in (a); Solid line: film resistivityρ(T) described on the basis of a Bloch–Gruneisen model, using Eq.(1),
ρR as listed, the constantsA, B, C andθ as in (a) and the ratioσ

σ0
predicted by mSXW theory according to Eqs.(3), (4) and (7), for an ACF described by

f (x, y) = δ2 exp
[
− x2+y2

ξ2

]
, with δ= 0.455 nm,ξ = 0.480 nm. Reprinted from Ref.[21] published by the Institute of Physics Publishing, with permission.

3.6. Size effects under a strong magnetic field

We report below the first measurement of the increase
in resistivity induced by electron–surface scattering in gold
films deposited on mica, performed at low temperatures and
high magnetic fields. Since this seems to be the first mea-
surement of magnetoresistance at low temperatures and high
magnetic fields performed on gold films where the signal can
be unequivocally attributed to electron–surface scattering, it
seems appropriate to briefly review the background to the
problem.

The notion that electron–surface scatteringincreasesthe
resistivity of a thin metallic film (in the absence of a mag-
netic field), because the presence of the rough surface implies
an electron scattering mechanism that contributes to dissipate
the energy of the electrons, is now widely accepted. The effect
of a magnetic field is to produce a curvature of the electron tra-
jectory between scattering events. In thin samples under high
magnetic fields, the effect of the magnetic field is expected to
result in the electrons sampling the rough surface at a rate that
is different from what it would be in the absence of a magnetic
field. The energy dissipation induced by electron–rough sur-

face scattering ought to manifest itself in galvanomagnetic
phenomena such as Hall effect and magnetoresistance.

Since the discovery of the quantum Hall effect in semi-
conductor heterostructures, the discovery of giant magne-
toresistance in nanostructures involving thin magnetic films,
and the discovery of high-temperature superconductors, there
have been thousands of papers published on galvanomagnetic
phenomena in metals and semiconductors within the last 16
years. However, an important fraction of the work published
so far involves either:

(a) nanostructures made up of thin metallic films that include
a magnetic metal between two non-magnetic metals that
gives rise to the so called giant magnetoresistance, where
electron scattering involves the interaction between the
electron spin and the local magnetic field present in the
sample, or

(b) semiconductor heterostructures, built such that dif-
ferences of the bandgap among the semiconductors
that make up the heterostructure give rise to a two-
dimensional electron gas (2 DEG)[23], or

(c) high-temperature superconductors.
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Technical advances related to molecular beam epitaxy led
to facilities where atomic layers of very pure semiconduc-
tor materials can be deposited onto the desired substrate, re-
sulting in heterostructures that give rise to a 2 DEG where
charge transport occurs in the ballistic rather than in the dif-
fusive regime. The semiconductor material making up the
heterostructure can be made so pure that the electrons move
ballistically—without undergoing bulk scattering—from one
electrode to the opposite electrode. Under such conditions,
charge transport is best described in terms of electron waves
that propagate through the cavity defined by the macroscopic
boundaries that define the electrodes, according to the quan-
tum formalism proposed by Buttiker and Landauer, to de-
scribe the conductance of quantum point contacts in terms
of the quantum of conductanceq2/h, whereq is the electron
charge andh is Planck’s constant[23].

A consequence of these developments is that even though
there are many hundreds of papers published concerning the
increase of resistivity induced by electron–surface scattering
in thin metallic films in the absence of a magnetic field, there
are only a few papers published addressing size effects in
non-magnetic metals in the presence of a magnetic field. The
theoretical treatment of size effects in the presence of a mag-
netic field is scarce[4,5,24]. In fact, a computerized literature
search performed on Hall effect or longitudinal or transverse
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Fig. 4. (a) Dependence of the magnetoresistance6ρ
ρ

= ρ(B)−ρ(0)
ρ(0) on the

strength of the magnetic fieldB at a temperatureT= 4 K. (b) Dependence
of the magnetoresistance6ρ

ρ
on temperatureT, at a magnetic field strength

B= 9 T.

mode. In all four samples, the diffractogram yielded a peak
at 2θ = 38.314◦ that corresponds to the [1 1 1] reflection of
gold. Therefore, all four samples are made up of grains that
coalesced to form the film; the grains grew oriented such that
direction [1 1 1] is perpendicular to the surface of the mica.

The dependence of the magnetoresistance on the magnetic
field strengthB observed at 4 K, withB perpendicular to the
sample (along direction [1 1 1] of gold) is shown inFig. 4a.
The dependence of the magnetoresistance on temperatureT,
at a magnetic field strength of 9 T, is shown inFig. 4b. The re-
sistivity measured at 4 K was 7.01, 4.72, 3.27 and 2.14 n5m
on the samples with a thickness of 69, 93, 150 and 185 nm,
respectively. At 4 K and 9 T, the productωτ (whereω stands
for the cyclotron frequency andτ stands for the average time
between collisions within the Drude model—not a relaxation
time) is 0.14, 0.20, 0.29 and 0.45.

The thickness dependence of the data underlines the fact
that electron–rough surface scattering does play a central role
in the increase in resistivity induced by the presence of the
magnetic field. This is consistent with the fact that, at 4 K, the
ratio between mean free path and film thickness is of order
2 in all four samples. The effect of increasing temperature
is, as expected, to reduce the time elapsed between scatter-
ing events, and hence to reduce the influence of the magnetic
field. The relative decrease of6ρ

ρ
with increasing temper-
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agnetoresistance over the last 16 years, turned up ove
rticles published during this period. And yet, the treatm
roposed by Calecki[24] is the last paper published addre

ng the simpler problem of galvanomagnetic phenomena
ize effects in non-magnetic metals in the presence of a
etic field, in samples where electron transport occurs i
iffusive rather than the ballistic regime, and the effec
lectron–rough surface scattering is expected to increa
finite) resistivity of the film set by electron scattering in
ulk.

Measurements of the transport coefficients in thin fi
ade out of non-magnetic metals, in the presence of a s
agnetic field at low temperatures (temperatures clo

iquid Helium, such as to warrant phonon freeze out and h
ong mean free paths and therefore repeated sampling
ough surfaces) are also very scarce[25].

For the magnetoresistance experiments reported belo
repared some fresh gold films of different thickness, e
rating gold 99.9999% pure from a tungsten basket filam
t a speed of 3 nm/min, onto freshly cleaved mica subst

n an HV evaporation chamber (vacuum of 1.0× 10−4 Pa or
etter during evaporation). The mica was preheated to 27◦C
efore evaporation; the films were annealed for 1 h at 27◦C
fter evaporation. This time the films did exhibit a resisti
t 300 K that is only a few percent higher than the 22.5 n5m
xpected from electron–phonon scattering in crystalline
t this temperature. This constitutes an indication that de
uch as grain boundaries, pinholes or impurities contrib
inor fraction of the observed film resistivity.
We recorded an X-ray diffractogram of each sample,

ing a Siemens D-5000 X-ray diffractometer on theθ–2θ
ture is larger for thicker samples. This might be expe
rom Kohler’s rule[26], for thicker samples exhibit a smal
esistivity and hence a larger value forωτ, at a given tempe
ture. What seems interesting is the nonlinear depende

he magnetoresistance on the strength of the magnetic
he increase of about 14% observed at 4 K and 9 T in

hickest sample seems surprisingly large. A similar non
ar dependence of the magnetoresistance has been re
n a 110 nm thick film of CoSi2 measured at 4.2 K and 9

he observed increase is about 1.5%. The nonlinearity
ttributed to the presence of two types of carriers, elec
nd holes[25].

On theoretical grounds, using BTE to describe ch
ransport, it has been shown that a crystalline metal c
cterized by a perfect spherical Fermi surface leads to a
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magnetoresistance, both when the electric field�E is perpen-
dicular to the magnetic field�B, and when�E is parallel to�B
[26]. In crystalline noble metals such as gold, departures of
the Fermi surface from a perfect sphere give rise to a magne-
toresistance different from zero[26].

The very fact that the observed magnetoresistance is
not zero and is thickness-dependent underlines the fact that
electron–rough surface scattering plays a central role in de-
termining the magnetoresistance. The nonlinear dependence
of the signal on the strength of the magnetic fieldB could
arise out of the non-spherical Fermi surface of gold, which
is a property of the bulk material. On the other hand, it could
arise from a geometrical effect unrelated to the properties of
the bulk, it could arise from the proximity of the rough sur-
faces limiting the film to within a distance comparable to or
smaller than the electron mean free path. In fact, Calecki’s
theory (based upon BTE, and assuming a spherical Fermi sur-
face) predicts a magnetoresistance that for weakB depends
onB2 [24]. Further analysis is needed to elucidate the origin
of the observed magnetoresistance.

4. Summary and conclusions

We have presented in these lines, recent advances concern-
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the fitted parameters describing the surface roughness should
be contrasted with direct measurements of the surface rough-
ness[9].

Finally, it seems apparent that if there is energy dissipa-
tion associated with electron–rough surface scattering, such
energy dissipation will manifest itself in other transport co-
efficients such as Hall voltage, magnetoresistance, thermo-
electric power, etc. The new results presented concerning
the increase in resistivity induced by electron–rough sur-
face scattering in the presence of a strong magnetic field
at low temperatures, require further analysis. The magne-
toresistance signal could arise from the non-spherical Fermi
surface of gold, or it could arise purely from electron–rough
surface scattering (even ignoring the departures of the Fermi
surface of gold from a perfect sphere). Such analysis is in
progress.

Acknowledgments

This work was supported by FONDECYT under contract
1010481.

References

Lon-

mic

[
[
[ Lon-

[
[ 986)

[ .
[ .
[ .
[ ter

[
[ .
[
[ 304

[ icon-
emic

[
[
[ Lon-
ng the problem of electron–rough surface scattering in
lms deposited on mica. This paper isnot a review article
or could it be, given the limitations of space. We simply t

o convey to the reader, and to the participants in the T
an Luis Symposium on Surfaces, Interfaces and Cata
Pan-American Advanced Studies Institute taking plac
érida, a critical view of progress in the field that has ta

lace over the last 5 years.
There are a few conclusions that might be drawn f

he information presented here. The first is that the app
greement reached by some researchers between res
ata measured on a family of metallic films of different thi
ess and its theoretical description using theories that em
everal fitting parameters could arise from a numerical
ent. The outstanding example is the representation o
est thin-film resistivity data on gold films evaporated o
ica substrates published by Sambles et al., using a m

ontainingfiveadjustable parameters: The r.m.s. rough
mplitude used to fit the data isδ≈ 0.026 nm,about one
enth of an atomic diameter, while the value measured w
he STM in our 70 nm gold film isδ= 0.45 nm, about 17times
arger. This remarkable discrepancy may be considered
ignal suggesting that, after over a century of research
aps our understanding of electron–rough surface scat

s still in its infancy.
In order to make progress in this field, it seems neces

o combine measurements of the transport coefficients o
etallic films, with independent measurements of the su

oughness in a nanometric scale, performed with a sca
robe microscope capable of atomic resolution. To vali
esults obtained through numerical fitting of resistivity d
[1] International technology road map for semiconductors.http://public.
itrs.net/files//2003.

[2] I. Stone, Phys. Rev. 6 (1898) 1.
[3] K. Fuchs, Proc. Camb. Phil. Soc. 34 (1938) 100.
[4] E.H. Sondheimer, Phys. Rev. 80 (1950) 401.
[5] E.H. Sondheimer, Adv. Phys. 1 (1952) 1.
[6] R.A. Matula, J. Phys. Chem. Ref. Data 8 (1979) 1147.
[7] J.M. Ziman, Electrons and Phonons, Oxford University Press,

don, 1963.
[8] E.M. Conwell, High Field Transport in Semiconductors, Acade

Press, New York, 1967.
[9] R.C. Munoz, et al., Phys. Rev. B 62 (2000) 4686.
10] J.R. Sambles, Thin Solid Films 106 (1983) 321.
11] P.A. Badoz, et al., Appl. Phys. Lett. 51 (1987) 169.
12] J.M. Ziman, Electrons and Phonons, Oxford University Press,

don, 1963 (Chapter XI).
13] N. Trivedi, N.W. Aschroft, Phys. Rev. B 38 (1988) 12298.
14] Z. Tesanovic, M.V. Jaric, S. Maekawa, Phys. Rev. Lett. 57 (1

2760.
15] L. Sheng, D.Y. Xing, Z.D. Wang, Phys. Rev. B 51 (1995) 7325
16] R.C. Munoz, et al., J. Phys.: Condens. Matter 15 (2003) L177
17] R.C. Munoz, et al., J. Phys.: Condens. Matter 11 (1999) L299
18] Z.H. Liu, N.M.D. Brown, A. McKinley, J. Phys.: Condens. Mat

9 (1997) 59.
19] R.C. Munoz, et al., Phys. Rev. B 66 (2003) 205401–205411.
20] R.C. Munoz, et al., J. Phys.: Condens. Matter 12 (2000) 2903
21] R.C. Munoz, et al., J. Phys. Condens. Matter 12 (2000) 379.
22] J.R. Sambles, K.C. Elsom, J.D. Jarvis, Philos. Trans. R. Soc. A

(1982) 365.
23] C.W.J. Beenakker, H. Van Houten, Quantum Transport in Sem

ductor Nanostructures, in: Solid State Physics, vol. 44, Acad
Press, New York, 1991, pp. 1–228.

24] D. Calecki, Phys. Rev. B 42 (1990) 6906.
25] J.C. Hensel, et al., Phys. Rev. Lett. 54 (1985) 1840.
26] J.M. Ziman, Electrons and Phonons, Oxford University Press,

don, 1963 (Chapter XII).

http://public.itrs.net/files//2003
http://public.itrs.net/files//2003

	Resistivity induced by a rough surface of thin gold films deposited on mica
	Introduction
	Bloch-Gruneisen resistivity
	Fuchs-Sondheimer theory
	Comparison between theory and experiment
	Conceptual difficulties arising when applying FS theory

	Progress in the theoretical description of size effects: quantum transport theories based upon a Hamiltonian formulation of the problem
	The theory of Sheng, Xing and Wang (SXW)
	Modified SXW theory (mSXW)
	Increase of resistivity induced by a fractal surface

	Progress in the experimental methods used to study size effects
	Measurement of the height-height autocorrelation function
	The r.m.s. roughness amplitude delta and lateral correlation length xi: influence of roughness modeling
	Quantum reflectivity of the rough surface
	Determination of the bulk conductivity sigma0 and bulk mean free path 
	Comparison between different quantum transport theories
	Size effects under a strong magnetic field

	Summary and conclusions
	Acknowledgments
	References


