Try a daily question on P3 each day in April 2017

Monday	Tuesday	Wednesday	Thursday	Friday	Saturday $1^{\text {st }}$	Sunday		
						$2^{\text {nd }}$		
					Stopping distances are important for road safety. The Highway Code uses diagrams to show stopping distances. There are two parts to the stopping distance; - thinking distance - braking distance. Both of these can be increased by different factors. Explain in detail how road conditions, speed and alcohol can affect road safety. [6 marks]			
$3{ }^{\text {rd }}$	$4^{\text {th }}$	$5^{\text {th }}$	$6^{\text {th }}$	$7^{\text {th }}$	$8^{\text {th }}$	$9^{\text {th }}$		
State Newton's 3 Laws of Motion and describe briefly an example of a real life scenario in which Newton's laws are obeyed for each law.	The table shows air resistance on a bicycle at different speeds: Speed $(\mathrm{m} / \mathrm{s}): \begin{array}{cccccc}0 & 1 & 2 & 3 & 4 & 5\end{array}$ Friction (N): $\begin{array}{llllllll}0 & 10 & 30 & 70 & 130 & 200\end{array}$ a) Sketch a graph of this data b) How fast can the cyclist travel is she can exert a push of 180 N ? c) When the cyclist crouches lower, she travels faster, explain why.	Complete the following sentences: a) The work done (in) is equal to the.... (in N) multiplied by the moved (in m) b) The principle of ofsays that energy can be from one form to another, but it cannot be or c) 1 Watt is the rate of working of one per	A car of mass 1000 kg is travelling at $30 \mathrm{~m} / \mathrm{s}$. a) What is its kinetic energy? b) It slows to $10 \mathrm{~m} / \mathrm{s}$. What is the KE now? c) What is the change in kinetic energy? d) If it takes 80 m to slow down buy this amount, what is the average braking force?	A girl of mass 50 kg climbs a vertical distance of 20 m . a) What is her work done? b) If she accomplishes this in 32 seconds, what power does she develop?	Friction is generally considered to be a nuisance, whilst considered correct in 'every day contexts', this idea is nonsense. Identify reasons for both why it is considered a nuisance and why it is extremely useful, try 5 for each with explanations.			
$10^{\text {th }}$	$11^{\text {th }}$	$12^{\text {th }}$	$13^{\text {th }}$	$14^{\text {th }}$	$15^{\text {th }}$	$16^{\text {th }}$		
Sketch 5 distance-time graphs and 5 velocity-time graphs for an object undergoing the following motion; 1. Stationary 2. Constant velocity 3. Constant acceleration 4. Deceleration 5. Return home at a constant velocity	A lift carries 4 passengers of average mass 62 kg each, if the lift moves at a speed of $2.4 \mathrm{~m} / \mathrm{s}$ and travels for 25 m a) What is the total distance the lift travels? b) How much work is done on the passengers? c) What is the average power of the lift?	State and explain some factors that affect the following; a) Thinking distance b) Braking distance c) Maximum speed obtainable	A pole vaulter has a mass of 50 kg . a) what is her weight in Newtons? b) If she vaults to 4 m high, what is her gravitational potential energy? c) How much kinetic energy does she have just before reaching the ground?	Define the following terms a) Resultant force b) Stopping distance c) Reaction (or Normal) force d) Terminal velocity	Susie is a skydiver. As she falls from the aeroplane her speed changes. Draw a velocity time graph representing her motion over time. Include the following a) Immediately after falling b) The motion as she accelerates c) Terminal velocity d) The deployment of the parachute e) The new terminal velocity Explain each of the above sections with regards to the forces acting on Susie.			
$17^{\text {th }}$	$18^{\text {th }}$	$19^{\text {th }}$	$20^{\text {th }}$	$21^{\text {st }}$	$22^{\text {nd }}$	$23^{\text {rd }}$		
A girl throws a ball upwards at a velocity of $10 \mathrm{~m} / \mathrm{s}$ (assuming gravitation acceleration to be $9.8 \mathrm{~m} / \mathrm{s}^{2}$ in the opposite direction and the velocity at the peak point to be $0 \mathrm{~m} / \mathrm{s}$. How high does it go?	The highway code says that at $20 \mathrm{~m} / \mathrm{s}$, the reaction distance of a driver is 14 m , and the brakes take 3 s to halt the car. a) What is the reaction time in this case? b) Plot a velocity-time graph for this data (assume steady deceleration with the brakes applied) c) Use this sketch to estimate the speed at which the driver would hit a wall 3 s after first noticing it.	Explain the following: a) A gun recoils when it is fired b) Firemen have to brace themselves when aiming a fire hose c) You, by yourself, can move our planet d) An astronaut is drifting away from his spaceship. How can he return using only an aerosol spray?	a) State the principle of conservation of energy. b) Only a small amount of chemical energy stored in the petrol of a car engine is changed into KE, which other forms of energy could this chemical energy be converted into? c) A cars engine uses fuel at a rate of 105 kW and converts it into useful power at a rate of 21 kW . Calculate the efficiency. d) Suggest a way in which fiction is a nuisance in car and how it can be reduced.	A mass of 5 kg changes its velocity from $4 \mathrm{~m} / \mathrm{s}$ to $24 \mathrm{~m} / \mathrm{s}$ in 10 s . Calculate; a) The acceleration b) The force needed for this acceleration c) the momentum at the start d) the kinetic energy at the start e) the kinetic energy after 2 s .	Look at the graph opposite It shows how the speed of a rollercoaster car changes with distance travelled along part of the track. The rollercoaster starts from rest at the top of the track at A. The car and its passenger has a total mass of 400 kg . Describe how the KE and GPE of the car change in sections $A B$ and $B C$. Calculate the difference in height of the rollercoaster between A and B . what assumptions have you made.			
$24^{\text {th }}$	$25^{\text {th }}$	$26^{\text {th }}$	$27^{\text {th }}$	$28^{\text {th }}$	$29^{\text {th }}$	$30^{\text {th }}$		
The output power of a small car engine is 2000 W . a) What does this statement mean? b) How much work does the engine do in 30 s ? c) If the efficiency of the engine is 25%, how mush energy is supplied to the engine in 30 s ?	An astronaut has a mass of 100 kg , What is his weight; a) On Earth b) On the moon (where the gravitational field strength is $1.6 \mathrm{~N} /$ kg)	A rollercoaster full of passengers wth a total mass of $12,600 \mathrm{~kg}$ is dragged up to a height of 92 m . a) What is the rollercoasters maximum gravitational potential energy? b) What is its maximum kinetic energy? c) What is the rollercoasters maximum speed?	A Saturn V Moon rocket has a mass at lift-off of $3.0 \times 10^{6} \mathrm{~kg}$. The thrust at lift-off is $3.3 \times 10^{7} \mathrm{~N}$. Find; a) The weight of the rocket on Earth b) The resultant force at lift-off c) The acceleration at lift-off d) Suggest why the acceleration of the rocket will increase with time.	Battery powered cars do not pollute when they are being driven, but they still cause pollution. Explain how. Discuss the pros and cons of electric cars compared to traditional petrol/ diesel cars.	Scientists investigate the safety of seat belts. They use two cars. Each car has an identical dummy in the driver's seat. Both cars are crashed, at the same speed, into identical barriers. In one car, the dummy is wearing a seat belt, In the other car, the dummy is not collision. Calculate the missing data and use the information in the table o explain how seat belts reduce injury in a crash.	Mass of dummy Distance travelled by dummy whilst stopping Time taken for dummy to stop moving Deceleration Stopping force		Crash without seat belt 60 kg after hitting windscreen 0.03 sec $467 \mathrm{~m} / \mathrm{s}^{2}$

Try a daily question on P3 each day in April 2017

